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Objective, yet cost-effective evaluation of flavor is difficult in quality control of milk. Inexpensive
gas chromatographs in conjunction with computer models make it feasible to construct an objective
flavor evaluation system for routine quality control purposes. The purpose of this study was to
classify milk with microbial off-flavors using a low-cost headspace gas chromatograph and computer-
aided data processing. Principal component similarity (PCS) analysis was discussed in part 1. In
part 2, artificial neural networks (ANN), partial least-squares regression (PLS) analysis, and
principal component regression (PCR) analysis are examined. UHTmilk was inoculated with various
bacteria (Pseudomonas fragi, Pseudomonas fluorescens, Lactococcus lactis, Enterobactor aerogenes,
and Bacillus subtilis) and a mixed culture (P. fragi:E. aerogenes:L. lactis ) 1:1:1) to approximately
4.0 log10 CFU mL-1. ANN were able to make better predictions than PLS and PCR. The prediction
ability of PLS was better than PCR. The performance of each method depended on the content of
training and testing of data, i.e., more data resulted in better predictive ability.
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INTRODUCTION

Objective evaluation of flavor quality has been one of
the most difficult problems in quality control of milk.
Recent progress in instrumental analysis and computer-
aided data processing now make objective evaluation
practicable.
Enormous amounts of data produced by automated

instrumental analysis make efficient data-processing
techniques an absolute necessity in modern food analy-
sis. Several different multivariate analyses have been
used. Especially in flavor research, multivariate analy-
sis is an essential tool for processing numerous peaks
obtained from GC patterns to classify samples. Aishima
and Nakai (1991) reviewed chemometric techniques in
flavor research as well as methods for multivariate
analysis. Forina et al. (1987) reviewed theory and
application of chemometrics in food chemistry. Applica-
tions of pattern recognition for quality control can be
found in papers by Page (1986), Jeon (1991), and
Resurreccion (1988).
There are two categories of classification in multi-

variate analysis techniques: supervised and unsuper-
vised, depending on whether the sample grouping is
known in advance.
Unsupervised methods do not require information for

classification. These methods cluster individual samples
on the basis of similarity among their data (Aishima
and Nakai, 1991). The most popular unsupervised
method is principal component analysis (PCA). PCA is
a technique to reduce dimensionality of the data. It
computes a few linear combinations of the original
variables which can be used to summarize the data with
minimal loss of information. PCA has been applied for
whisky (Headley and Hardy, 1989), soy sauce (Aishima,

1979), wines (Heymann and Noble, 1987), and sugar
cane (Cadet et al., 1991).
Supervised learning methods assume that the user

has information about the groups prior to application
of the algorithms. Multiple regression analysis (MRA),
linear discriminant analysis (LDA), principal component
regression analysis (PCR), partial least-squares regres-
sion analysis (PLS), and artificial neural networks
(ANN) have been used for supervised pattern recogni-
tion (Aishima and Nakai, 1991).
PCR is a combination of principal component analysis

and linear regression analysis. It provides the possibil-
ity of relating blocks of variables and allows an un-
known pattern to be classified and predicted (Aishima
and Nakai, 1991). PCR was applied for the prediction
of shelf life for pasteurized milk with a standard error
of estimate of 1.3 days within the anticipated shelf life
of 21 days (Vallejo-Cordoba and Nakai, 1994).
PLS is one of several multivariate calibration tech-

niques. Banks et al. (1992) applied PLS to gas chro-
matographic data from cheddar cheese. An excellent
correlation was found between gas chromatographic
data and sensory scores of cheese samples with various
ages. PLS gave more reliable predictions than PCR.
Martens et al. (1983) applied PLS for determining
relationships between different dependent variables and
sensory descriptive independent variables of cauliflower.
Arteaga et al. (1994) applied PLS to fourth-derivative
ultraviolet spectrums to determine the composition of
protein mixtures. They found a good correlation be-
tween measured and predicted protein composition. The
standard errors of prediction for 16 test samples were
13.4, 5.5, and 11.9% for Rs1-, â-, and κ-casein, respec-
tively, and the correlation coefficients between mea-
sured and predicted composition were 0.91, 0.99, and
0.94 for the three proteins.
Recently, artificial neural networks (ANN) have

become the focus of interest in many disciplines includ-
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ing food science. The ANN are computer techniques
which simulate the massive parallel structure of the
brain (Eberhart and Dobbins, 1990). There are two
principal types of network architecture: feed-forward
and feedback (Lawrence, 1991). The most popular
method is by example and repetition, also called back-
propagation network (BPN). BPN has been extensively
studied (Eberhart and Dobbins, 1990; Jansson, 1991;
Lawrence, 1991; Wythoff, 1993).
The BPN technique is one example of supervised

learning in feed-forward networks, in which the learning
rule is a mathematical equation known as the ∆ rule,
or the related least mean squares rule, which minimizes
errors between the known values and the network
responses (Lawrence, 1991). The BPN is usually built
from three layers: input, hidden, and output. The first
layer, called the input layer, takes the input values of
a pattern. The last layer, called the output layer,
produces the pattern outputs. The layers between are
called the hidden layers. Each layer has neurons, which
are also called processing elements, units, or cells. The
strength of a connection between two neurons is called
the weight, which determines the magnitude of effect
which one neuron can have on the other (Eberhart and
Dobbins, 1990). The weighted signals are summed to
form a net value. Usually they are simply added
together. Total input is run through the activation
function, which specifies what the neuron is to do with
the signals after the weights have had their effect
(Eberhart and Dobbins, 1990). The transfer function
is then applied to the activation values to produce
output. In a training sequence, the output of the
network is compared to known values and errors are
back-propagated to the hidden and input layers to
adjust the weights and minimize the error. This is
repeated many times until the errors between the
output and known values are minimized.
A neural network produced better simulation of

experimental foam capacity of food proteins than did
PCR (Arteaga and Nakai, 1993). Horimoto et al. (1995)
also reported better prediction ability of a neural
network than PCR for wheat quality for breadmaking.

MATERIALS AND METHODS
Data sampling, data manipulation, and dynamic headspace

gas chromatographic analysis were conducted as described in
the preceding paper (Horimoto et al., 1996). Group I consisted
of milk inoculated with P. fragi and P. fluorescens. Group II
consisted of milk inoculated with L. lactis, E. aerogenes, B.
subtilis, and a mixed culture (P. fragi:L. lactis:E. aerogenes )
1:1:1). Three supervised multivariate analyses were applied:
artificial neural networks (ANN), partial least-squares regres-
sion analysis (PLS), and principal component regression
analysis (PCR). To estimate the true predictive ability of each
method, cross-validation was used (Borggard and Thodberg,
1992). The data set is divided into two groups: training and
testing data. The model is fitted to the training data set.
Predictions are calculated by fitting the model to the testing
data set.
For the experiments with P. fragi and P. fluorescens, 30

samples were divided into training data (24 samples) and
testing data (six samples). For the experiments with L. lactis,
E. aerogenes, B. subtilis, and a mixed culture, 104 samples
were divided into training data (89 samples) and testing data
(15 samples). First, random numbers were generated for the
samples with Lotus 123 software (version 3.0, Lotus Develop-
ment Corp., Cambridge, MA). Then samples were arranged
in ascending order according to the generated random num-
bers. The testing data were picked up from the top. The
remaining data were used as the training data. After a model
was calculated using training data, each class of samples in
the testing data was predicted. The statistical parameters of
coefficient of determination (r2) and standard error of predic-

tion (SEP) for the known and predicted values were employed
to estimate predictive ability of each method. This procedure
was repeated five times.
Artificial Neural Networks (ANN). The neural network

software program “Brainmaker” (California Scientific Soft-
ware, Nevada, CA) was used. A three-layer neural network
was used to predict classes using the back-propagation algo-
rithm. A sigmoid function was used as a transfer function
because the sigmoid function is particularly useful for a
nonlinear relationship (Lawrence and Peterson, 1992). As
input neurons for networks, 24 variables for P. fragi and P.
fluorescens and 38 variables for L. lactis, E. aerogenes, B.
subtilis, and the mixed culture were used. The number of
output neurons was one, which represents each group. Since
output values were groups, each sample was expressed with
a two-digit number, the first digit indicating bacterial species
and the second storage time. Arbitrary ranges for each class
were used. As the first digits, 1, 2, and 3, were assigned to
negative control, milk inoculated with P. fragi, and milk
inoculated with P. fluorescens, respectively. The second digits,
1, 2, 3, 4, and 5, were assigned to storage days 0, 2, 4, 6, 8,
and 10, respectively. In the case of L. lactis, E. aerogenes, B.
subtilis, and a mixed culture, 1, 2, 3, 4, and 5 as the first digit
were assigned to negative control, milk inoculated with L.
lactis, E. aerogenes, B. subtilis, and a mixed culture, respec-
tively. Storage times 0, 4, 8, 12, and 24 h were assigned 1, 2,
3, 4, and 5 as the second digit, respectively.
The number of hidden neurons is an important factor for

the effectiveness of a network. Network performance may vary
with the number of the hidden neurons (Lawrence and
Peterson, 1992). With too many neurons, a network may not
learn but instead memorize patterns, or it may train and run
more slowly. On the other hand, without enough hidden
neurons, a network may not be trainable (Lawrence and
Peterson, 1992). Therefore the number of hidden neurons was
diminished starting from a default number, which is the
average of the number of input neurons and the output
neurons (Lawrence and Peterson, 1992). The default param-
eters were used for the learning rate (1.00) and momentum
factor (0.9).
Partial Least-Squares Regression Analysis (PLS) and

Principal Component Regression Analysis (PCR). PLS
and PCR were performed using the commercial software
“PLSplus Version 2.1” and add-on software to the spectroscopic/
chromatographic software system “LabCalc” (Galactic Indus-
tries Co., Salem, NH). The optimum number of factors for PCR
and PLS was determined using cross-validation procedures as
described by Martens and Naes (1989). The input and output
variables were the same as those used for ANN.

RESULTS AND DISCUSSION
Artificial neural networks (ANN), partial least-

squares regression analysis (PLS), and principal com-
ponent regression analysis (PCR) were applied to the
gas chromatographic data. Before being compared, each
method was optimized regarding the number of hidden
neurons of ANN and the number of factors of PLS and
PCR.
Effects of Inoculating Milk with P. fragi and P.

fluorescens. The number of hidden neurons was
optimized for the effectiveness of the ANN. With too
many hidden neurons, a network may not learn but
instead memorize patterns, or it may train and run too
slowly. On the other hand, without enough hidden
neurons, a network may not be trained (Lawrence and
Peterson, 1992). Thus the number of hidden neurons
was decreased starting from the default number. The
default number was the sum of the numbers of input
and output divided by 2 (Lawrence and Peterson, 1992).
ANN with too few hidden neurons cannot be completely
trained. Therefore, the training time was set for one-
half hour at maximum.
Figure 1 shows results using all data for training

ANN. The standard error of prediction (SEP) varied
depending on the content of testing data. The pattern
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of trial 5 was different from those of the other trials.
The difference of SEP within each trial was small
(2∼3%). There was no trend with different numbers of
hidden neurons. Generally, only a small difference in
SEP was found with various numbers of hidden neu-
rons. This indicates that the number of hidden neurons
did not influence the system. The difference was
presumed to come from another parameter, random
weight for each connection. The strength of a connec-
tion between two neurons is called the weight. It
determines the amount of effect that one neuron can
have on the other (Lawrence and Peterson, 1992). This
weight is randomly assigned. The first assigned weight
might influence a network system.
Figure 2 shows prediction ability of cross-validated

ANN. Compared with Figure 1, the SEP was much
greater. The SEP in trial 5 was consistently greater
than that of other trials, while the SEP in trial 2 was
smaller. This indicates that the SEP varied depending
on the training and testing data. SEP was not greatly
different within each trial. These results suggest that
the prediction ability is dependent on the content of
training and testing data. There was no trend with
different numbers of hidden neurons, except trial 2,
where the SEP became smaller with increasing hidden
neurons. Finally, the number of hidden neurons which
had the smallest SEP in the ANN in each trial was used
for the comparison with PCR and PLS.
Table 1 presents a comparison of the prediction ability

of ANN, PLS, and PCR. A model for each method was

trained with all data. The number of factors for PLS
and PCR were optimized automatically while running
the software (PLSplus, 1992). PLS used three factors
and PCR used two factors for the optimum model.
The mean standard errors of prediction (SEP) were

7.4%, 17.0%, and 23.4% for ANN, PLS, and PCR,
respectively. The SEP among methods was significantly
different (P < 0.01) in the one-way ANOVA test. To
determine which of the methods is significantly different
from each other, a Turkey HSD test was applied. The
result is also shown in Table 1 using a letter (A and B).
“A” or “B” indicates a significant difference at P < 0.01
or P < 0.05, respectively. The SEP of the ANN was
significantly different from those of PLS (P < 0.05) and
PCR (P < 0.01). The difference between PLS and PCR
was not significant. Coefficients of variation for the SEP
were 15.3%, 28.7%, and 26.9% for the ANN, PLS, and
PCR, respectively. The ANN consistently gave better
prediction ability.
The mean coefficients of determination (r2) were 0.98,

0.84, and 0.74 for the ANN, PLS, and PCR, respectively.
There were significant differences among the methods
(P < 0.05). From a Turkey HSD test, the r2 of the ANN
was significantly different from that of PCR (P < 0.01).
The coefficient of variation for r2 of the ANN was much
smaller than those of both PLS and PCR.
Table 2 shows the prediction ability of each method

using cross-validation. The mean SEP were 21.7%,
29.5%, and 33.3% for the ANN, PLS, and PCR, respec-
tively. The mean r2 between actual and predicted
values were 0.80, 0.69, and 0.59 for the ANN, PLS, and
PCR, respectively. The SEP and r2 among each method
were not significantly different from those of the one-

Figure 1. Standard error of prediction (%) by artificial neural
networks (ANN) using different hidden neurons for P. fragi
and P. fluorescens: (s) trial 1; (- - -) trial 2; (- - -) trial 3;
(‚‚‚) trail 4; (- ‚ -) trial 5. Training data include testing data.

Figure 2. Standard error of prediction (%) by artificial neural
networks (ANN) using different hidden neurons for P. fragi
and P. fluorescens: (s) trial 1; (- - -) trial 2; (- - -) trial 3;
(‚‚‚) trail 4; (- ‚ -) trial 5. Training data do not include testing
data.

Table 1. Comparison of Prediction Ability of Artificial
Neural Networks (ANN), Partial Least-Squares
Regression Analysis (PLS), and Principal Component
Regression Analysis (PCR) for P. fragi and P. fluorescens
(Training Data Include Testing Data)a

SEP (%)b r2 c

trial ANN PLS PCR ANN PLS PCR

1 7.1 21.9 23.9 0.98 0.73 0.67
2 7.3 17.7 19.8 0.99 0.88 0.96
3 6.8 9.0 26.1 0.98 0.98 0.75
4 6.4 16.8 15.4 0.98 0.83 0.89
5 9.3 19.5 32.0 0.96 0.78 0.43
mean 7.4**A1,B 17.0**A1 23.4**B 0.98*A2 0.84* 0.74*A2
SDd 1.1 4.9 6.3 0.01 0.10 0.21
CV (%)e 15.3 28.7 26.9 1.1 11.4 28.0

a *, significant (P < 0.05); **, significant (P < 0.01) in one-way
ANOVA test. Superscript A1, A2, significant (P < 0.01); super-
script B, significant (P < 0.05) in a Turkey HSD test. b Standard
error of prediction was divided by range of experimental values
in testing. c Coefficient of determination. d Standard deviation.
e Coefficient of variation.

Table 2. Comparison of Prediction Ability of Artificial
Neural Networks (ANN), Partial Least-Squares
Regression Analysis (PLS), and Principal Component
Regression Analysis (PCR) for P. fragi and P. fluorescens
(Training Data Do Not Include Testing Data)

SEP (%)a r2 b

trial ANN PLS PCR ANN PLS PCR

1 21.2 20.3 26.0 0.75 0.78 0.70
2 8.5 28.9 35.7 0.96 0.89 0.81
3 23.1 43.7 45.3 0.93 0.61 0.52
4 9.0 20.2 21.8 0.95 0.85 0.79
5 36.8 13.5 37.5 0.41 0.30 0.13
mean 21.7 29.5 33.3 0.80 0.69 0.59
SDc 10.0 10.0 9.4 0.23 0.24 0.28
CV (%)d 46.0 33.8 28.2 29.3 35.1 47.7
a Standard error of prediction was divided by the range of

experimental values in testing. b Coefficient of determination.
c Standard deviation. d Coefficient of variation.
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way ANOVA test (P > 0.05). The coefficient of variation
of the ANN was much larger than that of PLS and PCR.
In ANN, trial 2 gave the smallest SEP. The difference
between the smallest and largest SEP for the ANN was
about 28%. Even though the ANN generally had
smaller SEP than PLS and PCR, the content of training
and testing data have great influence on prediction
ability in the ANN.
Generally, the ANN was able to make better predic-

tions than PCR and PLS. This indicates that the
relationship between dependent and independent values
may be nonlinear. The ANN was also faster and easier
to use than PCR and PLS. The result using all data

was better than cross-validated results. This suggests
that a larger data set increases prediction ability for
the ANN.
Effects of Inoculating Milk with L. lactis, E.

aerogenes, B. subtilis, and aMixed Culture. Figure
3 presents the performance of the ANN with differing
numbers of hidden neurons using all data for training.
The SEP tended to be smaller with more hidden
neurons. Small variations of the SEP were observed
within each trial (2∼3%).
Figure 4 shows the performance of the cross-validated

ANN. Except in trial 2, there was a small difference
for SEP with different numbers of hidden neurons.
Compared with Figure 3, the SEP was much greater.
These trends were similar to those for milk inoculated
with P. fragi and P. fluorescens.
The ANN with the smallest SEP was used for the

comparisons with PCR and PLS. The number of factors
for PLS and PCR were 5 and 6, respectively. Table 3
shows the comparisons of the three methods. A model
was trained with all data. The mean SEP were 5.2%,
21.1%, and 25.1% for ANN, PLS, and PCR, respectively.
There were significant differences (P < 0.01) among the
three methods. In the Turkey HSD test, the SEP of the
ANN was significantly different from those of PLS and
PCR (P < 0.01). The difference between PLS and PCR
was significant (P < 0.05). Coefficients of variation for
the SEP were 16.8%, 14.3%, and 9.5% for the ANN, PLS,
and PCR, respectively. These values suggest that
prediction ability of the ANN varied depending on
testing data, even though the ANN consistently gave
smaller SEP than PLS and PCR. PCR consistently had
poorer prediction ability than the ANN and PLS. The
mean r2 values were 0.98, 0.71, and 0.56 for the ANN,
PLS, and PCR, respectively. There were significant
differences (P < 0.01) among the three methods. The
r2 of the ANN was significantly different from those of
PLS and PCR (P < 0.01). The difference between PLS
and PCR was also significant (P < 0.05).
Table 4 shows the cross-validation results of ANN,

PLS, and PCR. The mean SEP were 18.8%, 26.9%, and
26.2% for the ANN, PLS, and PCR, respectively. They
were significantly different (P < 0.01) from those of the
one-way ANOVA. From a Turkey HSD test, the ANN
had a significantly smaller SEP than PLS (P < 0.01)
and PCR (P < 0.05). No significant difference was found
between PLS and PCR. The mean r2 values were 0.73,
0.50, and 0.53 for the ANN, PLS, and PCR, respectively.
They were significantly different (P < 0.05). The
differences between the ANN and PLS and the ANN
and PCR were significant (P < 0.05) in the Turkey HSD
test. The difference between PLS and PCR was not
significant. ANN gave the best predictive ability. The
values for the SEP and r2 of PCR for the cross-validated

Figure 3. Standard error of prediction (%) by artificial neural
networks (ANN) using different hidden neurons for L. lactis,
E. aerogenes, B. subtilis, and a mixed culture: (s) trial 1;
(- - -) trial 2; (- - -) trial 3; (‚‚‚) trail 4; (- ‚ -) trial 5. Training
data include testing data.

Table 3. Comparison of Prediction Ability of Artificial Neural Networks (ANN), Partial Least-Squares Regression
Analysis (PLS), and Principal Component Regression Analysis (PCR) for L. lactis, E. aerogenes, B. subtilis, and a Mixed
Culture (Training Data Include Testing Data)a

SEP (%)b r2 c

trial ANN PLS PCR ANN PLS PCR

1 6.7 22.8 27.6 0.97 0.73 0.45
2 5.1 24.5 26.9 0.98 0.63 0.60
3 4.9 22.3 24.0 0.98 0.63 0.60
4 5.1 17.5 25.4 0.98 0.74 0.45
5 4.4 18.4 21.6 0.98 0.82 0.70
mean 5.2**A1,A2 21.1**A1,B1 25.1**A2,B1 0.98**A3,A4 0.71**A3,B2 0.56**A4,B2
SDd 0.9 3.0 2.4 0.004 0.08 0.11
CV (%)e 16.8 14.3 9.5 0.46 11.4 19.4

a *, significant (P < 0.05); **, significant (P < 0.01) in one-way ANOVA test. Superscript A1, A2, A3, A4, significant (P < 0.01); superscript
B1, B2, significant (P < 0.05) in a Turkey HSD test. b Standard error of prediction was divided by range of experimental values in testing.
c Coefficient of determination. d Standard deviation. e Coefficient of variation.

Figure 4. Standard error of prediction (%) by artificial neural
networks (ANN) using different hidden neurons for L. lactis,
E. aerogenes, B. subtilis, and a mixed culture: (s) trial 1;
(- - -) trial 2; (- - -) trial 3; (‚‚‚) trail 4; (- ‚ -) trial 5. Training
data do not include testing data.
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data were better than those for PLS. However, the
differences were not significant (P > 0.05). Therefore,
there was no difference of predictive ability between
PLS and PCR (P > 0.05).
From the above two experiments, it is concluded that

the ANN gave the best prediction ability among three
supervised methods. The prediction ability of PLS was
better than PCR. However, the performance of each
method was dependent on the content of training and
testing data; the more data, the better the prediction
ability. Each method gave better predictive ability
when trained with all data.

CONCLUSIONS

Three supervised multivariate analyses, artificial
neural networks (ANN), partial least-squares regression
analysis (PLS), and principal component regression
analysis (PCR), were applied to peak areas in chromato-
grams of UHT-sterilized milk samples with different
bacterial species and storage times. The statistical
parameters of coefficient of determination (r2) and
standard error of prediction (SEP) were used to estimate
predictive ability of each method. ANN gave the best
mean r2 and SEP among the supervised methods. The
coefficient of variation of SEP of the ANN was much
larger than that of PLS and PCR. Even though the
ANN generally had a smaller SEP and larger r2 than
PLS and PCR, the content of training and testing data
had great influence on the predictive ability of the ANN.
Generally, the ANN was able to make better predictions
than PLS and PCR. This indicates that the relationship
between dependent and independent variables may be
nonlinear. The ANN was also faster and easier to use
than PLS and PCR. The results from using all data
were better than cross-validated results. This suggests
that a larger data set increases predictive ability for the
ANN. Other parameters such as learning rate, momen-
tum factor, noise addition, weight control, and number
of hidden neurons can be optimized to improve ANN
predictive ability.
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Table 4. Comparison of Prediction Ability of Artificial
Neural Networks (ANN), Partial Least-Squares
Regression Analysis (PLS), and Principal Component
Regression Analysis (PCR) for L. lactis, E. aerogenes, B.
subtilis, and a Mixed Culture (Training Data Do Not
Include Testing Data)a

SEP (%)b r2 c

trial ANN PLS PCR ANN PLS PCR

1 24.8 29.9 29.1 0.58 0.37 0.50
2 24.2 26.3 27.9 0.59 0.61 0.51
3 14.3 26.1 25.6 0.84 0.52 0.48
4 15.7 26.7 26.2 0.81 0.43 0.46
5 15.0 25.5 22.1 0.83 0.59 0.70
mean 18.8**A,B1 26.9**A 26.2**B1 0.73*B2,B3 0.50*B2 0.53*B3
SDd 5.2 1.7 2.7 0.13 0.10 0.10
CV (%)e 27.8 6.3 10.2 18.2 20.4 18.3

a *, significant (P < 0.05); **, significant (P < 0.01) in one-way
ANOVA test. Superscript A, significant (P < 0.01); superscript B1,
B2, B3, significant (P < 0.05) in a Turkey HSD test. b Standard
error of prediction was divided by range of experimental values
in testing. c Coefficient of determination. d Standard deviation.
e Coefficient of variation.
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